

Introductions

Name: **Doug Renkosik**, CPMM, Director of Operations & Maintenance Role: Speaker

- Huntley Community School District 158

Name: **Kimberly Brisley**, ESG Account Manager – Illinois Role: Speaker - *Energy Systems Group*

Name: **Dan Barrie**, CPMM, Director of Operations Role: Moderator - *East Main District 63*

energy systems group

- Interactive Exchange of Best Practices
- Resources for Future Reference

#iasboAC22

Q&A Session

Huntley CSD 158 Roof System – *Restoration or Replacement?*

Run to failure or replace at expected life cycle/when failures start appearing?

- Added cost of insulation replacement adds \$11.00 to \$12.00 psf to project cost
- What type of roof system for replacement?
- Replacement of EDPM \$12.00 psf
- Pressure wash and coat with liquid applied membrane \$12.00 psf
- Restore liquid applied membrane system at year 20 (clean & top coat only) \$4.00 psf
- 40 year life cycle comparison for two different 20-year systems
 - Replacement single ply EPDM 2 cycles = \$24.00 psf
 - Restoration liquid applied roofing 2 cycles = \$16.00 psf savings = \$8.00 per sq ft or \$0.20 psf/yr on our budget

Huntley CSD 158 Pavement System Replacement

Run to failure or replace at expected life cycle/when failures start appearing?

Added cost gravel base replacement

What type of pavement system replacement process?

- Option 1: Replacement of gravel bases and 2 course asphalt \$3.60 psf
- Option 2: Full depth reclamation (FDR) gravel base and 2 course asphalt \$3.11 psf
 - w/ Option 2: Grind and replace surface course asphalt at year 15 \$1.65 psf

30 year life cycle look

- Replacement gravel base and two courses of pavement = \$7.20 psf
- FDR with two course asphalt = \$4.76 psf savings = \$2.44 per sq ft or \$0.08 psf/yr on our budget

#iasboAC22

Huntley CSD HVAC BAS Replacement

System was obsolete – unsupported by hardware/software manufacturers

Challenges

- Estimated system replacement costs \$2,000,000
- District capital projects replacement budget \$750,000 per year
- District had no ability or interest to borrow money to fund replacement due to financial position

Solutions

- Enhance sequences of operation provide energy budget savings -\$347,00 per yr. savings
- Capture incentives from ComEd and NiCor first cost reduction \$737,000
- Bundle lighting retrofit to model to enhance Return On Investment (ROI)
- Use Guarantee Energy Savings format for procurement model from Illinois State statute

Energy budget pays debt service

Status Off

Outside 7.2 °F 0.4 %RH 600.0 nnm

Challenges

- Existing 250-ton chiller at predicted end of life and not premium efficiency
- Building addition needs new HVAC system ME proposed new RTU w/ DX cooling

Solution

• Replace existing chiller with larger, premium efficiency unit to serve addition

Outcomes

- Existing chiller replaced from building addition budget
- Reoccurring service cost for cooling systems limited
- Overall energy consumption efficiencies realized

Challenges

- Building additions requiring more housekeeping services workload
- Labor workforce growth is challenging

Solutions

- Replace existing custodial equipment with higher productivity equipment
- Invest in new building finishes which are lower maintenance (e.g., LVT in lieu of VCT)

Outcomes

• Limit workforce growth

Project Axonometric from 100% Design Development Drawings (Architectural Set, Cover Page)

Huntley High School

3/17/2014

Published

Challenges

 Additions planned to High School (with a 33% footprint increase) on a constrained budget with limited appetite for increased energy consumption cost

Solution

• Contact the Smart Energy Design Assistance Center (SEDAC) for peer review of the designer team's plans and specifications for consideration in beyond energy code improvements with attractive Return on Investment (ROI) calculations

#iasboAC22

Outcomes

• Alternate bids taken for premium equipment / infrastructure with defined energy savings calculated by SEDAC for educated decision making. Several alternate bids were accepted with a net outcome of very limited increase in energy costs for the larger facility.

Maintain a Deferred Maintenance Capital Projects Plan PROCESS – Part 1

Inventory Physical Plant Infrastructure

- Construction Drawings
- Satellite Measuring Tools
- Bids: ask for take-off with bid for bid analysis

Post Expected End of Life for Each Component

- Industry Standards (ASHRAE, ASCE)
- Your District's Experience
- Manufacturer's Warranty

Maintain a Deferred Maintenance Capital Projects Plan PROCESS – Part 2

Post Replacement Value for Each Component

- Cost History from Prior Construction
- Contractor/Consultant History
- R.S. Mean's
- Your Network of Peers

Sort by Year

Move Items Around to Meet Fiscal Office Budget Plan for Short Term

Maintain a Deferred Maintenance Capital Projects Plan

> Examples of Categories to Include/Consider

> > #iasboAC22

Maintain a Deferred Maintenance Capital Projects Plan

Outcomes

• Average Annual Budget for Long-term Planning

#iasboAC22

• Proactive Life Cycle Replacement in Lieu of Emergency Parts

HCSD158 Capital Replacement Life Cycle Study Ten Year Look Forward Executive Summary Sort By Year

last edit 7/14/2021	SPECIAL NOTE: J	All costs posted are present value			
Fiscal Year	Physical Plant Needs Year Budget				
FY22	S	2,114,664			
FY23	S	4,140,844			
FY24	S	3,719,525			
FY25	S	2,871,076			
FY26	S	1,564,840			
FY27	S	2,129,338			
FY28	S	1,466,928			
FY29	S	540,062			
FY30	S	3,601,289			
FY31	S	2,084,112			
Ten Year Total Cost	S	24,232,679			
Average Annual Cost	S	2,423,268			

Challenges

• Getting your Board to proactively invest in deferred maintenance challenges and risks

Solutions

- Building Blocks
- Strategic Master Planning approach

Outcomes

- Increased Education and Engagement
- Improved Prioritization of Addressing Real Risk
- Proper Annual Budget Allocation

Category	Description	Examples of Facility Needs				
A (7 Facilities)	 Highest amount of deferred maintenance End of useful life assets Asset replacement required 	 Replacement of HVAC systems Lighting upgrades Temperature control system Air distribution systems upgrades 				
B (5 Facilities)	 Assets still in useful life Some deferred maintenance Retrofit/repair of assets required 	 Lighting Small HVAC Water Temperature control Building envelope 				
C (6 Facilities)	 Assets early in life cycle maintenance equipment Energy retrofit candidate 	 Lighting Temperature control HVAC Building envelope Plug load 				

STRONGER TOGETHER. SMARTER TOGETHER.

What is Capital Volatility Index

#iasboAC22

- Capital Volatility Index (CVI) is magnitude of capital needs required for replacement within a 3 year period as a percentage of total infrastructure in a facility
- Calculated based on age of the infrastructure, condition of the equipment, geographic location of infrastructure and useful life
- Calculated per piece of infrastructure and aggregated to create the District's Capital Volatility Index
- Any Schools with CVI above 50% indicates a need for an action plan for replacement and capital planning
- A low CVI reflects overall healthy infrastructure yet capital needs still exists in these buildings

Capital Volatility Analysis *Determine Risk of Replacement*

	÷.⊊. •	Tift County ECM Tool 11-07-17 comprehensive 20 year with capital avoidance - Excel						x – 10 – X			
File	Home Insert Page Layout	Formulas Data Review View	♀ Tell me what you w	ant to do						Joel I	owery & Share
X259	\cdot \times \checkmark f_x	=IF(\$U259<=1,(\$T259*\$K259)," ")						\sim		\sim	*
	А	В	С	D	н	к	т	U	V	w	X
115		Existing	Air Conditioning S	Systems				2017	15		
116	DFCS	Unit I.D.	Туре	Make	YR	Tons	Cost Per Ton	Remaining Useful Life/yrs	%Useful Life	Condition Index	2017
117		RM 111 thru RM 123	Split System	Trane	1997	4	\$3,000	-5	-33%	D	\$12,000
118		RM 227, 228 & 229	Split System	Trane	1997	1.5	\$3,000	-5	-33%	D	\$4,500
119		RM 230, 231 & 232	Split System	Trane	1997	1.5	\$3,000	-5	-33%	D	\$4,500
120		RM 161, 163, 164	Split System	Trane	1997	1.5	\$3,000	-5	-33%	D	\$4,500
121		RM 165 Computer Rm	Split System	Trane	1997	1.5	\$3,000	-5	-33%	D	\$4,500
122		RM 104 thru RM 110	Split System	Trane	1997	3.5	\$3,000	-5	-33%	D	\$10,500
123		RM 135 thru RM 138	Split System	Trane	1997	2	\$3,000	-5	-33%	D	\$6,000
124		RM 141, 142	Split System	Trane	1997	1.5	\$3,000	-5	-33%	D	\$4,500
125		RM 179 Training Room	Split System	Trane	1997	3.5	\$3,000	-5	-33%	D	\$10,500
126		RM 176 thru RM 192	Split System	Trane	1997	3	\$3,000	-5	-33%	D	\$9,000
127		RM 166 thru RM 170	Split System	Trane	1997	1.5	\$3,000	-5	-33%	D	\$4,500
128		RM 182-185; 189, 190	Split System	Trane	1997	3	\$3,000	-5	-33%	D	\$9,000
129		RM 148 thru RM 154	Split System	Trane	1997	3	\$3,000	-5	-33%	D	\$9,000
130		RM 143 thru RM 147	Split System	Trane	1997	2.5	\$3,000	-5	-33%	D	\$7,500
131		RM 155 thru RM 160	Split System	Trane	1997	2	\$3,000	-5	-33%	D	\$6,000
132		RM 213 - RM 219, 221	Split System	Trane	1997	3	\$3,000	-5	-33%	D	\$9,000
133		RM 206 thru RM 209	Split System	Trane	1997	1.5	\$3,000	-5	-33%	D	\$4,500
134		RM 210-212, RM 224	Split System	Trane	1997	3	\$3,000	-5	-33%	D	\$9,000
135		RM 220 Conference	Split System	Trane	1997	1.5	\$3,000	-5	-33%	D	\$4,500
136		Main Lobby RM 101	Split System	Trane	2012	5	\$3,000	10	67%	В	
137		RM 124 thru RM 133	Split System	Trane	2010	3	\$3,000	8	53%	C	
4	• Capital & Maintenance	Revenue Analysis ECM Matrix	Sheet1 CVA Calcu	lations Spend Pl	ai 🕀	÷ •				$\langle / /$	•
Ready						Av	erage: \$14,500) Count: 7 Sum: \$87,	.000	a 🛛 - 🦯	+ 100%

STRONGER TOGETHER. SMARTER TOGETHER.

Audit Findings

Audit Findings - Sampling

Percentage of HVAC Equipment That Needs Replacement

Challenges

 Many different business models to address deferred maintenance projects

Solutions

- Leverage best approach based on your needs and project scope
- Most complex work should leverage Illinois Legislation for Schools

Outcomes

Construction Management At-Risk (CMAR)
 legislations [IL Statue CMAR 50 ILCS 510/1-9: RFQ Process]

#iasboAC22

• Energy Savings Performance Contracting (ESPC) legislations [IL Statue ESPC 105 ILCS 5: RFP Process]

We owe it to our schools to educate others and proactively address our compounding deferred maintenance needs

- During COVID, many districts have not been making investments in infrastructure
- Recently, more concern about costs and availability of materials and labor for large construction projects
- Supply chain disruptions have continued at unprecedented levels especially in the areas of:

✓ lumber, **steel, copper, aluminum,** PVC, and gypsum

 Based on Turner Building Cost Index (Q4) we know increase in costs from Q3 +1.91%

- At ESG, we have seen some stabilization in material prices but do not expect them to return to pre-COVID levels:
 - $\checkmark\,$ Lead time on equipment still of concern
 - Select Design Build Partner who can make sure price and delivery are clearly established for you

Risks of Deferring Maintenance – Cost of "Do Nothing" is Real and Can Have Negative Impact on Your District

- Inflation is escalating and is now running close to 15% 20% per year
- Fluctuating Financing Rates/Missing Decade Low Interest Rates
- Supply Chain Delays
- Labor Shortages
- Need Proactive Approach to:
 - ✓ Negotiate Best Pricing
 - ✓ Get Best Companies to Deliver Scope

#iasboAC22

Missing Out on Available Incentives and Grant Money

Resources

• https://smartenergy.illinois.edu/

•

- <u>https://www.comed.com/WaysToSave/ForYourBusiness/Pages/BusinessPromo.aspx</u>
- <u>https://www.nicorgas.com/business/ways-to-save.html</u>
- <u>https://www.peoplesgasdelivery.com/savings/business/rebates</u>
- https://amerenillinoissavings.com/business/
- https://www.ilga.gov/legislation/ilcs/ilcs3.asp?ActID=726&ChapterID=11
 - https://www.ilga.gov/legislation/ilcs/fulltext.asp?DocName=010500050K19b-5

Questions and Answers

We thank you for your time!

Presenters:

MODERATOR INFO:

Dan Barrie, CPMM, Director of Operations East Main District 63 847.493.8404 | <u>dbarrie@emsd63.org</u>

PANELISTS INFO:

Doug Renkosik, CPMM, Director of Operations & Maintenance Huntley Community School District 158 847.659.6161 | <u>drenkosik@district158.org</u>

> Kimberly Brisley, Account Manager – Illinois Energy Systems Group 773.771.3200 | <u>kbrisley@energysystemsgroup.com</u>

#iasboAC22